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Abstract—Changes of gene orderings have been extensively used as a signal to reconstruct phylogenies and ancestral
genomes. Inferring the gene order of an extinct species has a wide range of applications, including the potential to reveal
more detailed evolutionary histories, to determine gene content and ordering, and to understand the consequences of structural
changes for organismal function and species divergence. In this study, we propose a new adjacency-based method, PVAGH,
to infer ancestral genomes under a more general model of gene evolution involving gene insertions and deletions (indels), in
addition to gene rearrangements. PMAGT improves on our previous method PMAGby developing a new approach to infer ancestral
gene contents and reducing the adjacency assembly problem to an instance of TSP. We designed a series of experiments to
extensively validate PMAGT and compared the results with the most recent and comparable method GapAdj . According to the
results, ancestral gene contents predicted by PMAG! coincides highly with the actual contents with error rates less than 1%.
Under various degrees of indels, PMAGT consistently achieves more accurate prediction of ancestral gene orders and at the
same time, produces contigs very close to the actual chromosomes.

Index Terms—Ancestral Genome, Gene Order, Genome Rearrangement, Gene Insertion, Gene Deletion

O

INTRODUCTION

Currently most methods are restricted to handle

Gene order data has been proved to be very useful
in phylogenetic reconstruction, but determining the
ancestral orders and orientations of genes is still far
from solved. In recent years, reconstruction the hy-
pothetical gene orders of ancestors with or without
being given the speciation history have both been
studied. If the speciation history is given (in the form
of a binary tree), the problem of finding ancestors
at non-leaf nodes is defined as the small phylogeny
problem (SPP); on the other hand, starting from a
set of related species, the big phylogeny problem
(BPP) searches for the phylogeny tree along with all
the ancestors in the tree. Current methods to solve
SPP are either event-based or adjacency-based. Event-
based methods seek for a set of assignments of gene
orders to each ancestor such that the number of
evolutionary events is minimized. These methods are
very expensive, and may not be able to find a solution
even after months of computation. To overcome this
problem, several adjacency-based methods were pro-
posed, which compute the score or probability of each
gene adjacency and assemble individual adjacencies
into a valid permutation of gene order based on their
scores or probabilities.

e Fei Hu and [ijun Tang are affiliated with the Tianjin Key Laboratory
of Cognitive Computing and Application at the Tianjin University of
China, and the Department of Computer Science and Engineering at
the University of South Carolina.

E-mail: jtang@cse.sc.edu

o Jun Zhou and Lingxi Zhou are Ph.D. Students in the Department
of Computer Science and Engineering at the University of South
Carolina.

datasets involving only rearrangements. Under such
model, species can only have equal gene content such
that each gene has exactly one copy in every species.
Therefore in this study we propose PMAG" as an
extension to our previous method PMAG in order to
efficiently handle datasets underwent a large scale of
rearrangements, as well as gene deletions and inser-
tions (indels) of a single or a segments of genes. Our
experimental results on simulated datasets suggest
that PMAG' can efficiently and accurately predict both
ancestral gene contents and ancestral gene orders.

2 EvoLuTION OF GENE ORDERS

Given a set of n genes labeled as {1,2,---,n}, a
genome can be represented by an ordering of these
genes. Each gene is assigned with an orientation that
is either positive, written i, or negative, written —i.
Two genes ¢ and j form an adjacency (i,7) if i is
immediately followed by j, or, equivalently, —j is
immediately followed by —i. If gene k lies at one
end of a linear chromosome, we let k be adjacent to
an extremity e to mark the beginning or ending of
the chromosome, written as (e, k) or (k,¢e), and called
telomere.

Genome rearrangement operations change the or-
dering of genes on chromosomes. An inversion op-
eration (also called reversal) reverses a segment of
a chromosome. A transposition is an operation that
swaps two segments of a chromosome. In case of mul-
tiple chromosomes, translocation breaks a chromosome
and reattaches a part to another chromosome, while
fusion joins two chromosomes and fission split one



chromosome into two. Yancopoulos et al. [1] proposed
a universal double-cut-and-join (DCJ) operation that
accounts for all common events. There are another
set of operations which can alter the gene content in
a genome. A deletion (also called loss) deletes a single
or a segment of genes from the genome. Its reverse
operation called insertion introduces one or a segment
of genes that have not seen before into a chromosome
at a time. Whole genome duplication (WGD) creates an
additional copy of the entire genome of a species.

3 METHODS FOR SOLVING THE SMALL
PHYLOGENY PROBLEM (SPP)

In the context of event-based methods, to find a solu-
tion for SPD, it is typical to iterate over each internal
node to solve for the median genomes until the sum
of all edge distances (tree score) is minimized. The
median problem can be formalized as follows: give a
set of m genomes with permutations {z;}1<;<m and a
distance measurement d, find another permutation x;
such that the median score defined as Y ;" d(z;, x)
is minimized. GRAPPA [2] and MGR [3] (as well as
their recently enhanced versions) are two widely-
referenced methods that implement a selection of
median solvers for phylogeny and ancestral gene-
order inference. However solving even the simplest
case of median problem when m equals to three is
NP-hard for most distance measurements. Progress
has been made in handling genomes with unequal
gene content. Tang and Moret proposed a two-phase
method [4] in which the best gene content for the me-
dian is computed and then a branch-and-bound ap-
proach is used to determine the best ordering of these
gene contents. Zhang et al. later extended Caprara’s
inversion median solver [5] and proposed a simplified
DC]J-based distance computation for unichromosomal
genomes with indels.

The first adjacency-based method in probabilistic
framework was introduced in | nfer CarsPro [6].
The key of this method is to estimate the posterior
probability of observing an adjacency in the ancestor
based on an extended Jukes-Cantor model for break-
points. With the obtained adjacency probabilities, it
then uses a greedy heuristic to find a valid gene order
for each ancestor. Later Hu et al. proposed a faster
and more accurate method PMAG [7]. Although PMAG
also seeks to compute the probabilities for adjacen-
cies and uses the same greedy heuristic to assemble
gene orders, it avoids the analysis of predecessor
and successor relationships, and directly calculates the
probabilities for only a subset of adjacencies appeared
in leaf nodes. However both methods are unable to
handle datasets with indels and the greedy heuristic
often returns an excessive number of contigs (frag-
ments of chromosomes) when some adjacencies may
have equally high probabilities but conflict each other.
In the past few years, several methods had been

proposed to accommodate datasets with unequal gene
content [8], [9], [10]. Among them, the most recent
method GapAdj [10] uses another scoring mechanism
for gene adjacencies and reduces the assembly prob-
lem to an instance of TSP. To filter out less reliable
adjacencies, it introduced a cutoff value to remove
adjacencies with scores below it in the TSP solution.
Further by considering pair of genes separated by up
to a given number of genes as direct gene adjacency,
contigs are iteratively combined into longer ones.
Compared to | nferCars [11], GapAdj produces a
more correlated number of contigs to the actual num-
ber of chromosomes at the cost of accuracy. Through
a natural process for the inference of ancestral gene
contents described in [12], GapAdj also supports the
analysis of unequal gene contents.

4 ALGORITHM DETAILS

Given a phylogeny, our new method computes the
gene content and ordering of ancestral (internal)
nodes one at a time. Prior to the inference of a target
ancestral node, we reroot the given phylogeny tree
to the node such that it becomes the root of the new
tree. The underlying rationale is that the calculation
of probabilities follows a bottom-up manner and only
the species in the subtree of the target node are
considered, therefore rerooting can prevent loss of
information. As a standard procedure, rerooting has
already found use for ancestral genome reconstruc-
tion [6], [7].

After rerooting, PMAG" proceeds the following three
steps: 1) inferring the gene content of target node to
determine which genes should appear; 2) computing
the probabilities of gene adjacencies; 3) forming and
solving a TSP problem to place genes on chromo-
somes. The following subsections describe these steps
in detail.

4.1

The very first step of ancestral reconstruction often
involves explicitly estimating gene content in ances-
tral nodes, using content information from leaves. A
number of approaches have been developed and most
of them are similar in spirit to the Fitch-Hartigan
parsimony algorithm [4], [12], [13].

For pure rearrangements, every gene observed in
leaf species should also be present in all ancestors;
however in the presence of gene indels, such corre-
spondence does not hold anymore and a gene can be
either present or absent in an ancestor. Therefore our
inference of ancestral contents relies on viewing genes
as independent characters (with binary states); we can
then determine the state for every gene in the ancestor.
The first step involves encoding the gene contents
of leaf species into binary sequences. In particular,
suppose a dataset G with N species is given and a
set of n distinct genes S = {g1, g2, ..., gn } is identified
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from G. For each leaf species G, its gene content
Si = {9ir,--gi} with £ < n can be equivalently
represented by a sequence m; = {m;,,m,,..., T, } in
which each element has two states; if g; € S;, m;, = 1,
otherwise 7;, = 0 for all j (1 < j < n). For instance
(table 1), a total of five distinct genes {a,b,c,d,e}
can be identified from two toy species G1 and G2
with gene orders (+a,—c,+d) and (+b,+a, —e) re-
spectively.

Many methods are available to infer ancestral states
from binary characters, including RAXM. [14] for max-
imum likelihood and PAUP* [15]. In this study, we
chose RAXML (version 7.2.8 was used to produce the
results given in this paper) to conduct the inference
of states. Once the probabilities of presence state,
P = {p1,p2,...,pn}, for the root node are computed,
the gene i belongs to the gene content of root Syqe: if
p; > 0.5, otherwise, gene 4 is not in S,,.:. Following
this paradigm, gene contents for all ancestral nodes
can be separately inferred from leaf species. Our
simulation shows that this approach can estimate gene
contents with less than 1% error even for very difficult
datasets.

4.2 Inference the Probabilities of Ancestral Gene
Adjacencies

In [7], we have presented an adjacency-based method
in probabilistic framework called PMAG to calculate
the probability of observing an adjacency in the target
ancestral node. The method proceeds in the following
three main steps.

Step 1 Each species in the dataset is screened to iden-
tify all unique gene adjacencies and telomeres.
By viewing each adjacency and telomere as
an independent character with binary states—
presence or absence, gene orders of species
can be rigorously encoded into aligned se-
quences of binary characters.

Step 2 The phylogeny tree is rerooted to the target
ancestral node in order to take all leaf species
into consideration. At the same time, the 2n
ratio for base compositions is setup such that
the rate of presence to absence transitions
is roughly 2n times as high as the rate of
transitions in the other direction under the
same evolutionary distance, where n is equal
to the number of genes. Such model has been
successfully used for phylogeny reconstruc-
tion [16].

Step 3 The probabilities of characters states for all
gene adjacencies and telomeres at the root
node are computed . The marginal ances-
tral reconstruction approach suggested by
Yang [17] for molecular data was adopted and
extended to compute for t

PVAGH reuses the three steps as described to calculate
probabilities for adjacencies and telomeres. Once these

probabilities are obtained, it then uses the following
step to connect gene adjacencies and telomeres into
contigs, from which the ancestral gene ordering can
be identified.

4.3 Assembling Ancestral Adjacencies into An-
cestral Gene Orders

The last step is to assemble gene adjacencies and
telomere into a valid gene order, with respect to the
gene content inferred from the first step. In gen-
eral, higher probability of presence state implies an
adjacency or telomere should be more likely to be
included in the ancestor; however the decision on
choosing an adjacency or telomere cannot be solely
made upon its own probability as each gene can
only be selected once. In PMAG, ancestral adjacencies
are assembled by the greedy heuristic based on the
adjacency graph proposed by Ma et al.. This greedy
method starts from a contig with the first gene and
picks its neighbor by using the adjacency with the
highest probability; it then continues adding new
genes until there is no more valid connection, in which
case the current contig is closed and a new one will be
formed. There are two issues with this approach that
motivated us to replace the greedy assembler with an
exact solver. First, the greedy heuristic can achieve
good approximation only when the dataset is closely
related in which case most vertices in the graph have
only one outgoing edge. Second, the greedy heuristic
tends to return an excessive number of contigs as it
frequently leads itself into dead ends.

Obtaining gene orders from (conflict) adjacencies
can be transformed into an instance of symmetric
Traveling Salesman Problem (TSP), as shown in [10],
[18]. In this case, we can transform genes into cities
and adjacency probabilities into edge weights in the
TSP graph. In particular, suppose for the target ances-
tral node I, we have identified a set of m adjacencies
A ={ay,as,...,a, } and n telomeres T = {t1,ta,...,tn}
from leaf species. If the gene content of I has been
inferred as St = {g1,92,...,g9x} and the probabilities
P = {pa,,.-sPay>Pt:s -, Pt, } for each adjacency and
telomere are known, we can create the TSP graph G
as follows:

1) Each gene g € S is represented by two vertices—
its head and tail, denoted as g" and ¢' respec-
tively. Every extremity in the telomere ¢t € T is
represented by a unique vertex e;, where 1 < i <
n. In this way, the total number of vertices in the
graph is equal to 2 x m + n.

2) Edges between all pairs of head and tail of the
same gene (g", g*) are added with — inf to guar-
antee this connection is present in the solution.
Edges are also established with — inf for all pairs
of extremities (e;,e;) where i # jand 1 <i,j <mn.

3) For every adjacency (f,g) € A, the correspond-
ing edge is added to G connecting f' and g".



TABLE 1: Example of binary encoding on gene content.

a b
G 1 0
Ga 1 1

c d e
1 1 0
0 0 1

Similarly for other combination of orientations
(7fa g)/ (fa 79) and (7f7 79)/ we can add (fhv gh)/
(ft,¢%) and (f", g*) respectively.

4) For every telomere (e;, g) € T, we add an edge to
G between ¢; and g". In case of (g,e;), an edge
between ¢' and e; are added.

5) For the rest of the edges in G, we set the edge
weights to inf to exclude them from the solution.

As the inferred probabilities range from 0 to 1,

using them directly as edge weights may introduce
undesirable impact associated with handling small
float points. It is critical for TSP to have a more precise
and fine-grained set of edge weights to assure the
quality of its solution. The most straightforward way
is to linearly correlate the edge weight with its proba-
bility, however in such case, differences of weights
between adjacencies are too strong and adjacencies
with smaller probabilities can hardly be considered.
Therefore we decide to use the following equation to
curve the probabilities into edge weights:

wiggy(m) = (1—=pirg) 1

where (f,g) € {AUT} and p(; 4 is the probabilities of
observing (f,g). m is the sole parameter determining
the shape of the curve and according to our experi-
ments, TSP yields good results when m = 6.

We then utilize the power of one of the most used
TSP solver Concor de [19] to find the optimal path
which traverses every vertex once with the minimum
total score. In the solution path, multiple contiguous
extremities are shrank to a single one and a gene
segment between two extremities is taken as a contig.
Our construction of TSP topology is in spirit similar
to GapAdj , however GapAdj requires additional pro-
cedures and parameters to adjust the contig number.
Instead our inference of ancestral genome is uniform
and directly from the solution of TSP, minimizing the
risk of introducing artifacts.

log, (10™ x

5 RESULTS
5.1 Experimental Design

To evaluate the performance of PMAGY, we ran a series
of experiments on simulated datasets under a wide
variety of settings. We generated model topologies
from the uniformly distributed binary trees, each with
s species. An initial gene order of n distinct genes
and m chromosomes was assigned at the root so it
can evolve down to the leaves following the tree
topology mimicking the natural process of evolution,
by carrying out a set of predefined evolutionary
events. We used different evolutionary rates r with

50% relative fluctuation, thus the actual number of
events per edge is in the interval |"5%,r x n|. Sev-
eral evolutionary events were considered—inversions,
translocations and indels and each kind of event was
assigned a probability to be selected during the sim-
ulation process. In this paper, we only present results
with 20 genomes, each with 1000 genes and 5 chro-
mosomes, to closely mimic bacterial genomes. The
evolutionary rates r were set from 50 to 200 events,
the later representing highly disturbed datasets. For
each combination of evolutionary events, we simu-
lated 10 datasets and reported averages and standard
deviations.

Our predicted ancestral genomes are evaluated by
the ratio of correct adjacencies and telomeres recov-
ered. In specific, we used the following equation to
compute the error rate of reconstruction.

|DND'|
B= (1= 55 * 100%
where D represents the set of gene adjacencies and
telomeres in the real genome and D’ the predicted
genomes. We further refer an element that is con-
tained in inferred set S’ but not in true set S as a
fal se positive (FP) and f al se negative (FN)
is defined similarly, by swapping S and S5’.

5.2 Assessing the Accuracy of Ancestral Gene
Contents

We first ran simulations to test PMAGT on the in-
ference of ancestral gene contents. Our gene orders,
derived from its direct ancestor through a number
of events, underwent random indels and inversions
(two boundaries of each inversion are uniformly dis-
tributed). Two different probabilities (5% and 10%)
of occurrences for indels were used. We compared
our inferred gene content with its corresponding true
content and counted the number of FPs and FNs.
For each dataset, we summed the number of FPs
and FNs in all internal nodes and divided it by the
total number of genes in all ancestral nodes that
are missing or inserted. Figure 1 shows our results.
From this figure, the FP rates are always extremely
low (only one dataset produced FPs), indicating that
our inference can prevent introducing erroneous gene
content and the inferred contents are reliable. FN rates
increase slightly when more indel operations were
performed, but even in the worst case the error rate
stays below 1%. At the same time, we ran GapAd]
without specifying any WGD node and set the cut-
off value and maximal iterations to 0.6 and 25 as
suggested. According to the results, GapAdj failed to
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Fig. 1: FP and FN rates (divided by the numbers on
upper x-axis) with standard deviations under various
evolutionary rates and indel rates. Labels on upper
x-axis represent the total number of genes that are
inserted or deleted over all internal nodes due to indel
operations. Numbers above points indicate the actual
amount of errors in average.

infer a large portion of inserted genes, making the FPs
rates in all cases higher than 60%.

5.3 Assessing the Accuracy of Ancestral Gene
Orders

We conducted several tests to evaluate the accuracy of
PMAG" under different degrees of indels. Our first test
is to compare PMAG" with current standard approach
that reduces the dataset into equal content by elimat-
ing genes that are not present in every genome, which
forms the baseline method (named PMAG'- Base).
Our second test is to give PMAG™ the “ground true”
content (named PMAG'- Tr ue) to eliminate all impacts
from gene contents. To compare the greedy heuristic
to the TSP solution, we switched back to the greedy
heuristic and redid the tests (named PMAG'- G eedy).
Finally the results of GapAdj (which is the most recent
method to our knowledge) were reported. To have
a fair comparison, we also compared PMAGT with
GapAdj using datasets without indel operations.
Evaluation of designed experiments in terms of
error rates is shown in figure 2. From the figure, the
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Fig. 2: (a), (b) and (c) summarize the error rates under
various evolutionary rates and combinations of evolu-
tionary events (Ins for insertion, Del for deletion, Inv
for inversion and Tsl for translocation). (d) shows the
running time for methods in (a). Error bars indicate
the standard deviations



error rates for both PMAG"™ and PMAG'- Tr ue are the
lowest in all cases and the difference between the
two approaches is almost indistinguishable, indicating
that errors introduced by a very limited amount of
false contents are not significant.

As expected, PMAG'- Base recovered the least
amount of adjacencies due to the loss of contents.
GapAdj , due to its failure in gene content inference,
achieved much higher error rates in the presence of
indels. Even in the test of equal gene content, PMAGH
can still outperform GapAdj with around 5% higher
accuracy.

PMAG'- Gr eedy came very close to PMAG!, how-
ever in all test, PMAG" can always return more accu-
rate reconstruction than PMAG'- Gr eedy, suggesting
the usefulness of our TSP assembler.

Using different degrees of indels has little impact
on the performances of PMAG". From the perspective
of adjacency evolution, an inversion operation always
breaks two extant adjacencies and creates two new ad-
jacencies, the disturbances on adjacencies introduced
by an indel operation are essentially much similar to
an inversion. In particular, a deletion breaks two adja-
cencies and creates a new one, while a insertion breaks
one adjacency and introduces two new adjacencies.
Therefore, as long as ancestral gene contents can
be accurately predicted, PMAG" returns comparable
results with all combinations of evolutionary events.

The last figure summaries the running time of all
methods. From the figure, PMAG"- Gr eedy benefits
from the greedy heuristic is indeed slightly faster than
PMAG', while GapAdj which solves the TSP problem
heuristically took a longer time to finish than PMAGH
using an exact solver.

5.4 Assessing the Number of Inferred Contigs

In [7], PMAG was tested with only unichromosomal
genomes, but the inferred ancestral genomes were al-
ways composed of a large number of contigs. GapAdj
designed a series of algorithms with two arguments
to reconnect contigs into chromosomes with restric-
tion of local and small evolutionary operations. Our
method PMAGY, on the other hand, by treating telom-
eres as a special type of adjacencies, simultaneously
finds the best set of adjacencies and telomeres in one
step. As translocation operations account for inter-
chromosomal rearrangements which can be equiva-
lently viewed as a fission followed by a fusion, thus
all ancestors should also have the same amount of
chromosomes to the root node, which is 5 in our
test cases. For each dataset with N ancestors, the
number of contigs ¢; (1 < ¢ < N) in each ancestor
was counted and the average absolute differences

N B
per ancestral node # was computed to as-
sess the accuracy of chromosomal assembly. Figure 3
summaries our findings. As predicted, the amount of
contigs produced by PMAG was totally irrelevant to
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Fig. 3: The average of absolute differences per ances-
tral node produced by various methods. Error bars
indicate the standard deviations

the true number of chromosomes, while GapAdj can
indeed reduced a large portion of redundant contigs.
In comparison, the number of contigs returned by
PMAG" can precisely reflect the actual number of
chromosomes in the true genomes.

6 CONCLUSIONS

In this study, we proposed a new adjacency-based
method called PMAG' to infer the ancestral gene or-
ders under a more general model of gene evolution,
including intra-chromosomal and inter-chromosomal
rearrangements as well as gene insertions and dele-
tions. As real ancestors are unknown, we tested our
method through a series of simulation studies. Ac-
cording to the results, PMAG" can accurately deduce
the ancestral gene contents with error rates less than
1%. In the subsequent inference of ancestral gene
orders, PMAG" can outperform all existing methods.
Also by adopting a TSP solution for adjacency assem-
bly, PMAG" not only overcame the issue on producing
excessive contigs, but also achieved better perfor-
mance than PVMAG
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